

Fabry-Pérot Laser Diodes

(FP): 840 nm - 1100 nm

WAVELENGTH

760-840 nm

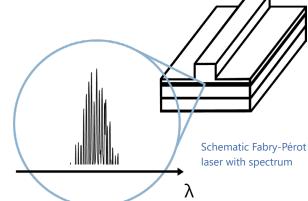
840-1100 nm

1100-1700 nm

1700–2400 nm

2400-2900 nm

2800-6500 nm


6000-14000 nm

High-Power OPT

nanoplus FPs are specially designed and characterized to fit your requirements. For more than 20 years, nanoplus has been manufacturing DFB and FP lasers with excellent performance. Our devices operate **reliably** in more than 30,000 installations worldwide.

Key features:

- BROADBAND
- HIGH-POWER
- SMALL FOOTPRINT

Any **custom wavelength** is possible: You tell us what you need! With our outstanding technology we design any wavelength **between 760 nm and 2900 nm** with an accuracy of +/- 20 nm.

The **output power** of **several mW** yields a strong signal and gives large flexibility to your application. High power up to 1 W for diverse applications is available on request.

We offer **various packaging options**, e. g. several free space housings including TEC and NTC, fiber coupling, **collimation** and **custom designs**. What are your requirements?

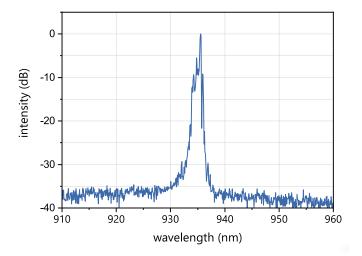
Long-term stability is one of the principal features customers value about our lasers! Even in **harsh environments** nanoplus devices perform excellently – low maintenance warranted.

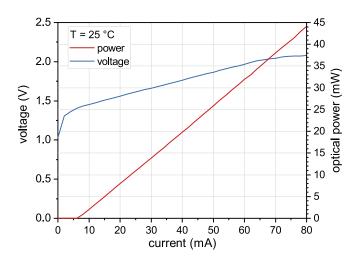
"Do not change your ideas, let us deliver a laser that fits your application."

If you require **custom specifications**, please contact us. Nearly 80 % of our devices are more or less customerspecific. As nanoplus is a **fully vertically integrated company**, we control the entire process chain from design to packaging. Both nanoplus production facilities are based in **Germany**. To guarantee consistent product quality we apply a strict and **ISO certified quality management system** at all levels.

Our sales and R&D teams have long-standing experience in developing lasers. They will be pleased to provide advice at any time - rely on us from design stage to product realization as well as after-sales:

We make market leaders!





Typical Specifications: 840 nm - 1100 nm

This data sheet reports performance data of a **sample Fabry-Pérot laser at 935 nm,** which is representative for the entire wavelength range. If you need more power, please check our <u>High-Power Option</u>: https://nanoplus.com/HPFP

Typical room temperature cw spectrum of a nanoplus FP laser at 935 nm

Typical PI and VI curve of a nanoplus FP laser at 935 nm

electro-optical characteristics	symbol	unit	min.	typ	max.
operating wavelength (at $T_{op'}$ I_{op})	$\lambda_{_{\text{op}}}$	nm	-20	935	+20
optical output power (at $\lambda_{_{op}}$)	P _{op}	mW		35	
operating current	l _{op}	mA		70	
operating voltage	V_{op}	V		3	
threshold current	I_{th}	mA		50	
operating chip temperature	T _{op}	°C	+20	+25	+50
operating case temperature*	T_{c}	°C	-20	+25	+50
storage temperature*	T_{s}	°C	-40	+20	+80

^{*} non condensing

laser packaging options

TO5 with TEC and NTC, black cap, AR coated window
TO56 without TEC or NTC, sealed, window
c-mount or other submounts without TEC or NTC
butterfly package with TEC and NTC, SM fiber, FC/APC connector

chip on carrier without TEC, with NTC

Technical drawings & accessories are available at: https://nanoplus.com/packaging-options

Please contact <u>sales@nanoplus.com</u> for customized specifications, quotes and further questions. Visit our website for technical notes, application samples or literature referrals.